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Abstract
There exists several divides between implicit and explicit paradigms
in concurrent programming models, for example between the as-
sumption of coherent shared memory (e.g. OpenMP), and the as-
sumption of distributed memory (e.g. MPI). Explicit paradigms
exist to provide control to programmers, but cause scalability con-
cerns: programs need to be adapted whenever the granularity of
concurrency changes. With the rise of large heterogeneous pools
of computing resources, we must increasingly distribute tasks au-
tomatically. Implicit paradigms allow this in theory and are de-
sirable for expressivity and intuitiveness, but their scalability in
heterogeneous environments is yet unclear. In this position paper,
we propose to consolidate previous knowledge by seeking more
implicit concurrent programming models that combine three prop-
erties. The first desirable property is resource agnosticism, where
programs separate clearly the description of computations from the
description of task distribution to resources. The second property
is scoped synchronization, where programs express no more syn-
chronization than required by the described computation. The third
property is the visibility of data dependencies between tasks by
compilers and run-time systems. Only when these properties exist
together, it becomes possible to automatically tailor programs to
heterogeneous target systems and achieve efficient execution. We
show how specializability is needed to optimize this process.

Categories and Subject Descriptors D.1.3 [Concurrent pro-
gramming]: Distributed programming; D.3.2 [Language classi-
fications]: Concurrent, distributed, and parallel languages; D.3.4
[Processors]: Run-time environments

General Terms Distributability, visible data dependencies, re-
source agnosticism, scoped synchronization, specializability.

Keywords Heterogeneous concurrency resources, concurrency
granularity, concurrent programming models, dataflow program-
ming, cloud computing, concurrency mapping and scheduling

1. Introduction
We identify the following three distinctions in current concurrent
programming models. A first distinction exists between implicit
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and explicit concurrency control, i.e. the management of the exis-
tence of tasks and the mapping and scheduling of tasks to execution
units. Another distinction exists between implicit and explicit com-
munication, mostly between models assuming shared memory and
those assuming distributed memory. The third distinction exists be-
tween implicit and explicit synchronization, i.e. the negociation of
“rendezvous” points between asynchronous tasks.

Programming paradigms have long favored side effects and
implicit communication for practical reasons. As early as 1985, the
author of [18] highlights that CSP, where explicit message passing
finds its roots,

strongly discourages the programmer from carving his pro-
gram into a large number of processes. This psychological
disincentive operates whether or not there is any underlying
difference in efficiency of nonlocal versus local accesses.
[...] thus parallelism at small levels of granularity is discour-
aged. Large processes require large processors and thus lead
inexorably toward systems with relatively small numbers
of large processors and away from “myriaprocessors”—
highly parallel machines with relatively small processing
elements—that might exploit coming technology more ef-
fectively.

Despite notable efforts at implementing fine-grained CSP-based
models efficiently over large parallel systems, such as Occam and
the transputers [11, 23], these efforts have not been repeated re-
cently. Besides, we observe that explicit concurrency causes new
scalability concerns: explicit programs need to be adapted when-
ever the granularity of concurrency changes, and support for het-
erogeneous environments is difficult. This is a significant issue to-
day, because massively concurrent execution resources are becom-
ing ubiquitous but available as heterogeneous pools. Manual tai-
loring of parallelism to many different resource characteristics be-
comes simply too expensive. We postulate the following:

1. explicit concurrency control exist only to provide control of
resources to programmers by lack of better, automated solutions
via compilers and run-time systems; and

2. expliciteness makes reasoning about programs difficult, and re-
stricts the automated transformation of programs to the specific
properties of concurrent resources.

Using the words and the spirit of [9], we suggest that explicit
concurrency control, global synchronization and unstructured data
dependencies should be abolished from all “higher level” program-
ming languages (i.e. everything except, perhaps, system-oriented
languages where run-time systems are implemented). We propose
to move in this direction by seeking the following three general
properties. The first desirable property is resource agnosticism,



where programming environments separate clearly the description
of computations from the description of mappings of tasks to re-
sources and the scheduling on execution units. The second prop-
erty is scoped synchronization, where programs express no more
synchronization than required by the computation. This can be
achieved either by implicit synchronization or scoped explicit syn-
chronization. The last desirable property is the visibility of data de-
pendencies between tasks to compilers and run-time systems, for
instance by providing explicit dependencies or structured implicit
dependencies in programming languages. We explain and illustrate
these properties in the following sections.

These three properties already exist in many current models, but
are rarely found together. We show that when they are available,
programs can be both distributable and specializable to specific
target architectures either at compile-time or at run-time. Scalabil-
ity in heterogeneous environments can then be achieved without
changes to programs.

2. Resource agnosticism
Resource agnosticism is present in a programming model when
programs expose concurrency in computations but do not explicitly
manage it. Concurrency is exposed when programs indicate when
operations can be executed concurrently and/or when they must be
executed in sequence. Management occurs when programs define
the distinction between tasks (where computations are described)
and execution threads (where execution takes place), define the ex-
istence of threads, or define how and when to map and schedule
tasks onto threads. By definition, resource agnosticism mostly op-
poses explicit concurrency control.

We can recognize that resource agnosticism exists when the pro-
gramming model does not expose to programmers which sequential
processor is in charge of specific parts of the computation, nor pro-
vides handles to control threads and the distribution of tasks. When
looking at the POSIX threads interface [19] and the correspond-
ing programming model, we don’t see much resource agnosticism.
Programs must control threads and the mapping of tasks explicitly.
Thread management overheads mandate a coarse-grained exposi-
tion of concurrency. Instead, OpenMP [25] provides much more
resource agnosticism. The most common use of OpenMP is to an-
notate loops to indicate how they can be run concurrently. The re-
sponsibility of the mapping and scheduling of tasks to threads is
delegated to the OpenMP run-time system, and so is the creation
and termination of execution threads. Of course, pure dataflow pro-
gramming is the ultimate form of resource agnosticism. Many mod-
els derived from dataflow concepts including Cilk [4] (functional
concurrency), S-NET [15, 17] (streams) and SAC [14] (both func-
tional concurrency and data parallelism) are mostly resource agnos-
tic, since they suggest to programmers to define only workload in-
dependence and typically do not offer controls on task distribution.
Of course, resource agnosticism does not exclude explicit concur-
rency control entirely, as long as it stays external to the description
of computations. We highlight that explicitly distributed programs
(e.g. with MPI) are mostly not resource agnostic however. Indeed,
they assume strict process boundaries, from the assumption of re-
source boundaries. This assumption limits optimization opportuni-
ties when coalescing processes on common nodes, because process
boundaries must be enforced [27] to preserve program semantics.

3. Scoped synchronization
In the general sense, synchronization occurs in two situations. The
first is precedence synchronization, when progress in some task(s)
is dependent on progress in some other task(s). The other form
of synchronization is exclusion, necessary when sharing state be-
tween independent tasks. In both cases, multiple tasks engaged in

synchronization must communicate synchronization events. When
concurrency is mapped across space, this creates requirements on
interconnects and networks. Scoping synchronization aims at lim-
iting the scope of synchronization events, in order to provide both
the opportunity to run-time systems to map programs to hardware
that satisfies the requirements efficiently, and a bound to the cost of
the communication of events.

Here we address implicit and explicit synchronization sepa-
rately. With explicit synchronization, programming models offer
conceptual devices that offer synchronization services, shared be-
tween two or more sequential processes. For example, a mutex
lock is such a device for exclusion. Condition variables are a sim-
ple device for precedence synchronization, but so are thread teams
in UPC [28] and communicators in MPI when involved in col-
lective communication. With synchronization devices, scoped syn-
chronization can be achieved if the environment can determine cer-
tainly, before tasks are distributed to resources, which tasks have
access to which devices. This is required if the communication
costs are to be optimized. Here, we observe that programming mod-
els that assume shared memory typically expose poor scoping of
synchronization, because synchronization devices are assumed to
exist in a global pool visible from every task (the shared memory)
and visibilities are not explicitly declared. We identify Chapel [5],
Fortress [1], S-NET and SVP [20] as exceptions. With Fortress and
Chapel, synchronization devices are lexically scoped in programs,
and synchronization scopes are thus statically known. In S-NET,
the link between synchrocells and computations is explicit and vis-
ible prior to mappings. With SVP the only explicit synchronization
device is the exclusive place which offer the “secretary” service de-
scribed in [10]. Access to this device must be requested explicitly
by tasks to a controller authority also in charge of distributing work;
the controller thus knows exactly the scope of exclusion.

With implicit synchronization, scoping is usually available di-
rectly to the environment. For example when precedence synchro-
nization is implicit via reads and writes to channels, the endpoints
of the channels determine the scope. Scoping is also usually avail-
able with implicit synchronization on the termination of tasks,
when the environment can determine, when tasks are created,
which tasks can be dependent on their termination. This is usu-
ally the creating task, or possibly continuation tasks in models that
have them (e.g. Cilk). Conversely, scoping can be lost if termi-
nation of an asynchronous task can be captured in a closure and
stored and/or shared anonymously, like with “futures” in Multil-
isp [18] and “spawns” in X10 [6]. More generally, the presence
and use of unscoped barriers in programs are a clear symptom of
unscoped synchronization since they involve all tasks.

4. Visibility of data dependencies
Data-dependent tasks rely on communication services from the en-
vironment at run-time. For a given program, a given input and a set
of characteristics for individual execution units, there exists a min-
imal set of requirements on the capacity, topology, and other prop-
erties of the communication links between tasks that maximizes
efficiency at some level (e.g. performance vs. cost). We capture
these requirements collectively as the communication requirements
of programs. By definition these are not scalar values but functions
of the input parameters and the execution resources.

The need to identify and describe communication requirements
has long existed in HPC, where the cost of computing resources
justifies detailed analyses of the behavior and properties of pro-
grams before the resources are acquired and the programs mapped.
More recently, communication requirements have become essen-
tial to the pricing of services in cloud computing. In [3] and [2],
the authors identify previous work in the classification of commu-
nication requirements across a range of computing areas. However,



to our knowledge, efforts to derive automatically communication
requirements from programs and model their evolution across het-
erogeneous resource characteristics have been limited so far. There-
fore, we propose to steer future work on programming models to-
wards deducing communication requirements automatically from
the data dependencies between tasks in programs. This in turns re-
quires that data dependencies are visible to the environment prior to
the mapping and scheduling of tasks to resources, and that they ex-
pose enough information to deduce communication requirements.

Generally, explicit communication (e.g. via message passing)
can expose dependencies to automated tools when programs use
high-level operations [13]. Issues start to arise with implicit com-
munication, and were partially identified as early as [29]. A com-
mon situation is the assumption of near-uniform access to a shared
memory, which allows programs to express arbitrary, uncoordi-
nated data dependencies between any pair of tasks. The dependen-
cies in such programs are typically not analyzable before the pro-
grams are executed, i.e. after mapping and scheduling have been
decided. This situation is pervasive in models that allow and en-
courage the use of global shared state and side-effects, but also ex-
ists in more “controlled” models. In particular we highlight models
that allow a task to allocate storage in a global pool and communi-
cate only a handle to it to other tasks, while hiding the mapping of
handles to storage from the environment. Although a data depen-
dency on the handles is visible, the information needed for com-
munication requirements is hidden between “producer” and “con-
sumer” tasks that coordinate in this way. SVP and SAC are an ex-
ample of this situation. We also point at the consistency model as-
sumed by programs. A consistency model is a contract between
programmers, compilers, and the environment that offers com-
munication opportunities and restrictions between tasks. As such,
well-specified weak consistency models [24] are desirable because
they push programs to express more information on communica-
tion requirements in the data dependencies between tasks.

While this visibility property is more difficult to recognize in
models offering implicit communication, we can provide a few
examples. In S-NET, behavior is isolated in SISO and state-free
boxes whose data dependencies stem from the network structure.
With UPC, the data dependencies are partially visible through the
partitioning of the global adress space and task affinity with por-
tions of the address space. Dataflow-like programs can be written
to use only explicit data dependencies, e.g. in Cilk or SVP. With
Cilk++ [22], hyperobjects [12] allow implicit communication, but
they are well-structured and can be extracted by the environment
when they are scoped lexically in programs.

5. Distributability and specializability
The challenge of heterogeneous concurrency resources is the diver-
sity of concurrency granularities. The concurrency granularity of
a given execution environment reflects the threshold on the size of
workloads where it becomes advantageous to expose them to the
concurrency management system, as opposed to simply express
them sequentially [26]. Ideal scalability over arbitrary concurrent
resources requires programs to expose at least as much concurrency
as available in resources, but the granularity of resources prevents
programs from expressing “too much” concurrency due to over-
heads. A common assumption is that the granularity is homoge-
neous and known. In this context it is possible to tailor manually
the expressed concurrency to the resources. With pools of heteroge-
neous resources with diverse granularities, possibly evolving over
time, this assumption does not hold. We take cloud computing as an
example, or large grids of clusters of multi-cores. The cost of man-
ual adaptation then justifies seeking automated solutions to adapt
programs to the granularity of the resources they are mapped onto.

Efficient automated solutions, if they exist, require two general
properties from programs. The first property, distributability, is es-
sential but intuitive. It requires that programs express concurrency
so that it can be mapped onto effectively concurrent heterogeneous
resources. This implies resource agnosticism, needed to allow a
diversity of resources. It also requires visible scopes on synchro-
nization, because mappings for program synchronization must be
decidable over heterogeneous implementations of synchronization.
Distributability is then increased when more concurrency is ex-
posed and data dependencies are more visible, because knowledge
of communication requirements is required to evaluate and decide
mappings automatically in run-time systems.

Once distributability is available, programs can be mapped onto
resources whose granularity is finer than the one expressed. The
distributed S-NET system described in [16] is a successful exam-
ple. We then highlight the situation with heterogeneous pools with
both coarse and fine concurrency granularities in resources. Dis-
tributability suggests expressing more fine-grained concurrency in
programs, in order to achieve effective distribution over the fine-
grained resources. However while doing so, mappings should still
be possible on coarse-grained resources. Here we propose the other
desirable property from programs, that of specializability. This re-
quires that in a program exposing fine-grained concurrency, any
arbitrary part of the program can be be transformed automatically
when mapped onto a coarse-grained resource to remove the over-
head of managing the expressed concurrency.

We have not yet recognized explicit definitions and uses of spe-
cializability in current programming models, although the efforts
described in [8, 27] suggest growing attention in this direction by
the community. We do observe however that specializability is en-
abled in Cilk via the concept of faithfulness [22], which allows
program parts to be trivially converted to sequential C code with
identical semantics and no concurrency overhead. A similar oppor-
tunity exists in SVP, where any thread family can be transformed
to a sequential loop.

Once both distributability and specializability are available in
languages and used by programs, a run-time system can map any
program to any assortment of concurrency granularities while pro-
viding efficient execution on each resource. The achieved concur-
rency can be augmented simply by expressing more concurrency
in programs, without introducing overheads because the extra con-
currency can be removed by specialization on coarse-grained re-
sources. We predict that S-NET, when used in combination with
a specializable box language, offers this opportunity fully. We
have seen early attempts in this direction [7, 21], although object-
oriented programming hides the scope of synchronization and de-
pendencies and thus restricts mapping optimizations.

6. Conclusion
Most programming models today exhibit the three proposed prop-
erties—namely implicit concurrency control, scoped synchroniza-
tion, visibility of data dependencies—to some extent. Not surpris-
ingly, these properties are less present, even hindered, in concurrent
programming models that evolved as extensions of sequential mod-
els (e.g. OpenMP). They are more pervasive with models dedicated
to distributed programming (e.g. MPI), although these are still sen-
sitive to granularity. However, we must seek also specializability,
i.e. the ability to tailor programs parts automatically to multiple
concurrency granularities. We point to S-NET in combination with
Cilk or SVP as an example promising hybrid programming model
that exposes this feature and enables run-time systems to optimize
execution over increasingly complex sets of concurrency resources.
We suggest that the general adoption of the proposed properties
in future research will facilitate more scalable communication and
synchronization across pools of heterogeneous resources.
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